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In this paper, we use the biorthogonal wavelets recently con-
stricted by Dablke and Weinreich ta implement a highly efficient
procedure Tor solving a cerlain class of one-dimensional problems,
{0 ax™Mu=f 1€ Z, 1 > 0. For these problems, the discrete biorthog-
onal wavelet transform allows us to set up a system of wavelet-
Galerkin equations in which the scales are uncoupled, so that a true
multiscale solution procedure may be formulated. We prove that
the resulting stifiness matrix is in fact an almost perfectly diagonal
matrix (the original aim of the construction was to achieve a block
diagonal structure) and we show that this leads to an algorithm
whose cost is O(n). We also present numerical results which demon-
strate that the multiscale biorthogonal wavelet algorithm is superior
to the more conventional single scale orthogenal wavelet approach
both in terms of speed and in terms of convergence. ®1995
Academic Press, Inc.

L. INTRODUCTION

Recent work by Dahlke and Weinreich [3] has resulted in 2
new construction which leads to famities of biorthogonal wave-
lets ideally suited to solving problems of the form

(’)H

===y = f,

pyeT ez, >0
The aim ol the Dahike~Weinreich construction is to oblain a
seale-decoupled system of wavelet—Galerkin equations for such
problems by forcing the stiffness matrix to be block diagonal.
With orthogonal wavelets, there is insufticicnt freedom to
achieve decoupling of the scales. The gencralization to bior-
thogonal wavelets, however, provides the extra degrees of frec-
dom needed. The Dahlke~Weinreich construction allows us to
generate biorthogonal wavelets which exhibit the scale-decou-
pling property, using any orthogonal wavelet as a starting point.
We recall that the Daubechies orthonormal compactly sup-
ported wavelets {1] have arbitrarily high regularity; i.c., they
may exactly represent polynomtials of degree N/2 — 1, where
N is the number of non-zero flilter coefficients defining the
scaling function. When the Dahlke—Weinreich construction is
applied to Daubechics” wavelets, the resulting biorthogonal
wavelets also exhibit smoothness which increases with N,
Here we outline our own numerical experiments using these
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new biorthogonal wavelets. We observe both numerically and
theoretically that the resulting stiffness matrices for the above
class of problems are not just hlock diagonal, but almost per-

Sectly diagonal, under the application of the discrete biorthogo-

nal wavelet transform. This allows us to develop an O(n) solu-
tion procedure in which we solve for each of the scales
separalely. We implement the procedure and present conver-
gence and cost results for our implementation.

In our discussion, we focus on problems with periodic bound-
ary conditions. In Refs. [13, 14] we outline a capacitance matrix
method which utilizes wavelet-based periodic solvers to enforce
boundary conditions in elliptic boundary value problems. The
general approach there is to use a discrete analog of the results
of classical potential theory; e.g., for the Laplace equation on
a planar region {1, we would use a discrete form of the resuit

wo =[O =G - g ds® or

0
an(g)
(x) = j (@G~ Hdsd)

in which the Green’s function, G, is calculated numerically
using the periodic solver.

2. MULTIRESOLUTION ANALYSIS USING
BIORTHOGONAL WAVELETS

2.1, Biorthogonal Wavelet Bases

We start by describing the setting for biorthogonal wavelets
as a generalization of orthogonal wavelets. Biorthogonal wave-
lets are characterized by two sequences of embedded subspaces

0. -V_,CV_ CV,CV,CV,---LYR),
oy-.-V_,cv_cvV,cV,CV,. - LYR).
Two scaling functions are required: a primary scaling function,
p(x), for the subspaces V,, and a dual scaling function, ¢(x),

for the subspaces V,,. Define the complementary spaces, W,
and W, such that

vn|+| - vm @ ‘vnn v!ﬂ+| = “.rm ea wm! (l)
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where & represents a direct sum. In general, the subspaces V,,
and V, are not orthogonal to their respective complements.
Rather, they satisfy the conditions

W,.1V,, W,.LlV,. (2)

The spaces W,, and W,, are generated from two wavelets, i(x) €
W, and §i{x) € W, respectively, Thus, conditions (23 imply that

(W), P — k) =0, (J), H(- — k) =0. (3)

In addition, we require that the primary and dual functions
satisfy

(D), B — k) =8y WO GC— ) =6 @

The following scaling relations hold true

B =D ap(2x - k), )= ad2x -k, (5

k k

B(x) = > Bd(2x — k), 0 =D bd2x — k), (6)
k k

where the coefficient sequences are assumed to be of even
length, N, and

b= (—Ddayyon b= (— Dy
Note that Egs. (3) are automatically satisfied by the above
defintions of &, and &,.

As with orthogonal wavelets, the non-vanishing integral of
the scaling function leads to the constraints

;aﬁz, ;akzz. N

In addition, Eq. (4) leads to the following condition on the
filter coefficients:

> ad =28, VKkELZ (8)
k

2.2, Wavelets in the Fourier Domain

Section 2.1 entailed a description of biorthogonal wavelets
in the physical domain. This section summarizes their descrip-
tion in the Fourier domain. We use the notation

Fo =" fweras

to denote the Fourier transform of f(x).
Taking the Fourier transform of the scaling relations, Eqgs.
(5) and (6), leads to

e

ko =tacma(f).  do-tacmi(f) o

wo=tiema(f), e -Lueond ). a0
where
N—=| N-]
ale ) = E ae ™, ale™t = g, (11)
k=0 0

LIS
Il

ble™€) = —e W lig(—e™#), Dble ) = — Mg (—e7H),

(12)
Furthermore, Eq. (4) leads to the condition

Ha(e ™ ae™) + a(—e ™ d(—e ] = 1. (13)

2.3. The Discrete Biorthogonal Wavelet Transform

The discrete biorthogonal wavelet transform (DBWT) is a
straightforward generalization of the discrete wavelet transform
(DWT). Since there are two seis of embedded subspaces {V,.;
m € Z} and {V,; m € Z}, we define the respective projections
of a function f onto these subspaces by

me= E Cm.k“;bm.h 3Hd ‘ﬁmf= E é’m.kfgm‘l’u (14)
k ¥

where ¢,x = {f, ®,) and &, = {f, dny). Likewise, we define
the projections of f onto W,, and W, by

me: E dm,kl!}m.ks me: Ek: Jm‘k‘rrm.k’ (15)

where d,,; = (f, ) and d,.; = {f, ¥.,). By manipulating Eqgs.
(D), (3), (4), (5}, and (6), we obtain the relations

! I
Ca,j ™ 72» zk: B3 Crt1 s dm,j = % EL bk—2jcm+l,h (16)

1 1 ~
Cotr1k = % 2 i—2iCon + % 2 bk-Zjdm.j- (17)
i i

We refer to Egs. (16) as the primary DBWT. The inverse
transformatjon is then given by Eq. (17), which we refer to as
the primary IDBWT. Expressions for the dual DBWT and its
mverse may be obtained by interchanging the symbols (+) and
(7). Note that Eqs. (16) and (17) represent a single stage in
the decomposition and reconstruction process. In order to obtain
the complete transforms these equations must be applied recur-
sively over all scales 1.

Next, we give the matrix form of the primary and dual
DBWTs and their inverses. We use the notation W, to dencte
the matrix which operates on some n-dimensional vector ¢ to
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produce the first stage of its primary DBWT. Likewise, we use
the notation W, for the first stage of the dual DBWT. Then
Egs. (16) and (17) imply

H I
WR=[G], Wil =[H"CT] =W,
(18)

H
W, = [G] W' =[H" Gl = W],

where
1
H=—%
- v‘zv —
dy ay LR ¢ SN} 0 Q e 0 0
0 0 (2% ay Ay-y - 0 0
a; as 0 0 0 a
| 5] 5] 0 0 0 dp a Jin/tixn
1
G=—=
- -\/5 -
by, b by, 0 6 - 0 0
0 0 & b by, -+ 0 0
b4 bs e O 0 O =t b2 b3
|_ b, by - 0 0 0 T ) o

and # and G are similarly defined in terms of the filters {3}
and {b,}, respectively. .
To conclude this section, we make the following remarks.

1. The application of Egs. (16) and (17) to finite length
sequences leads to problems at the boundaries. One possible
solution is to develop wavelets which are adapted to an interval
on the real line. In this discussion, however, we assume that
the sequences are either periodic or periodizable by a smooth
extension. The structure of the matrices H, G, H, and G reflect
this assumption,

2. The DBWT differs from the orthogenal discrete wavelet
transform: in that W, is not an orthogonal matrix, ie., W,' #
WL, in general. In the language of subband coding, this means
that we cannot expect perfect reconstruction if we use the
same FiR filters for decomposition and reconstruction. Perfect
reconstruction now requires that we have four filters instead of
the two that are required with orthogonal wavelets. This is
illustrated in Fig, 1, in which we use the symbol x to denote
the sequence x, and X to denote the time reversed sequence x.,.

Cm+l

IZ:J Comvalye with filter X
Insert a zero between samples

Keep every other sample

FIG. 1, Subband coding scheme for DBWT showing the use of different
decompositicn and reconstruction filters to obtain perfect signal reconstruction,

3. Finally, we note that the DBWT, like its orthogonal

counterpart, is an O(x) procedure. This is evident from a factor-
ization of the matrix W, into blocks as described in [2]:

W= odd—even | 1
" shuffle H\/_i

[ & 4 v 0 0 0 07
by b byy 0 0 0 0
0 0 4 & Gy 0 0
0 0 b b By- 0 0. (19
@& da - 0 0 0 - a a
by by - 0 0 0 - B b

3. ADAPTATION OF WAVELETS TO
DIFFERENTIAL OPERATORS

In this section we describe the Dahtke~Weinreich construc-
tion and we make some important observations regarding the
properties of the resulting bicrthogonal wavelets.

3.1, The Dahlke—Weinreich Construction

The motivation behind the Dahlke—Weinreich construction
is to obtain a scale-decoupled system of equations when the
wavelet—Galerkin method is applied to problems of the form

621

—Su=f 1€L1>0. (20)

This decoupling of the scales would enable us to solve sepa-
rately for the different scales (frequency bands) that occur in u.

Hitherto, the principles of multiresolution analysis have not
been directly applicable to the solution of ODEs and PDEs
because the application of the two-dimensional DWT to the
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wavelet—Galerkin stiffness matrix does not in general produce
a block diagonal matrix. With orthogonal wavelets, the require-
ment for a block diagonal matrix is that

(), g = ) = ($(), ¥*C = k) = 0.

However, it is not possible to generate filter coefficients which
satisfy this condition since this would violate the orthogonality
of the scaling function to the wavelet.

With biorthogonal wavelets, there are two conceivable op-
tions. One is to require that (¢™(-), §{- — kb)) = 0. However,
this condition would contradict Eq. (3). The second (and viable)
option is to require that

(@), (- —kp =0. (21)
The Dahlke—-Weinreich construction to achieve condition (21}
is summarized as follows.

Construction 3.1, Let {h; k = 0--- N} be the filter associ-
ated with Daubechies N coefficient orthonormal compactly sup-
ported wavelet and let

N-1
gle ™) = 2mo &) = X, he ™ (22)
k=0

be the correspending transfer function. Then the transfer func-
tions of the primary and dual biorthogonal scaling functions
which satisfy (21) are given by

—ie\
a(e™) = (1 +2e 6) g(e™®),

: 2e7¢
ae™)= ( 7 f e_.;) qle™).

We refer to 3] for a proof of this construction. Our numerical
experiments have shown that the Dahlke—Weinreich construc-
tion may be successfully applied to orthogonal wavelets other
than the Daubechies wavelets. The resulting biorthogonal
wavelets exhibit the same properties as those derived from the
Daubechies wavelets.

(23)

3.2, Properties of the Dahlke-Weinreich Wavelets

Recall that the aim of the construction was to achieve

(@HC), (- — k) = 0.

In this section we highlight another important property of the
Dahlke-Weinreich wavelets which arises naturally from their
construction. It is this property which allows us to solve Eq.

TABLE 1

33

Filter Coefficients of the Biorthogenal Wavelets Adapted to &/ax
Which Are Derived from Daubechies D12 Wavelet

k hy & a
0 0.15774243200288 0.07887121600144 0.00000000000000
1 1.69950381407516 0.42862312303902 0.31548486400577
2 1.06226375988165 0.88088378697841 1.08352276414456
3 0.44583132293005 0.75404754140585 1.04100475561874
4 ~0.31998659889202 0.06292236201902  —0.14934210075863
5 —0.18351806406025  —0.25175233147613  —0.49063108802541
6 0.13788309207474  —0.02281498554276 0.12359495990491
7 0.03892320970833 0.08840565134153 0.15218122604456
8  —0.04466374833018  ~—0.00287026931092  —0.07433480662789
9 0.00078325115230  —0.02194024858804  —0.01499269003246
10 0.00675606236293 0.00376963675761 0.01653919233706
1 —0.00152353380560 0.00261626427866  —0.00304706761120
i2 —0.00076176690280 .00000000000000
13 0.00000000000000 0.00000000000000

(20) in O(n) time, The following result was initially observed in
numerical experiments; a formal proof is given in Appendix A.

THEOREM 3.1.  Let i be the primary biorthogonal wavelet
derived using the Dahlke—Weinreich construction. Then the
(2Dth derivative of ¥ satisfies the property

EC), P — ) = (= 12%8y,,

where &, is the Kronecker delta.

Theorem 3.1 states that the primary wavelet, 4, is orthogonal
to its {2/)th derivative. The implication of this result is that the
dual DBWT of the stiffness matrix is a diagonal matrix, with
the exception of the low frequency block. The low frequency
block consists of terms of the form {$*7(:), ¢(- — k)} and it
has been shown in [3] that

!
(M), d- ~ k) = Z (A (=15, (24)

==

Note that these are exactly the coefficients of the corresponding
finite difference stiffness matrix. In particular, when ! = 1, we
obtain the familiar centered difference scheme for the second
derivative operator:

(@) & — k) = 8-y — 285 + e (25)
Table 1 gives the filter coefficients of the biorthogonal wavelets
adapted to 8*/dx?, which are derived from the Daubechies 12
coefficient wavelet. Figure 2 shows the corresponding bior-
thogonal scaling functions and wavelets.
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(a) (&)

1 1
2 5 10 % 5 10
{cy L

2 2
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0 0
-1 -1

“o 5 10 % 5 10

FIG. 2. Wavelets adapted to ¢%/ax* and derived from Daubechies D12
wavelet: {a) Primary scaling function; (b) dual scaling function; {c) primary
wavelet; (d) dual wavelet.

4. MULTISCALE WAVELET-GALERKIN SOLUTIONS IN
O(n) TIME

In this section, we describe how the Dahlke—Weinreich
wavelets may be used to solve Eq. (20) in O(n) time using a
wavelet—Galerkin approach. Our discussion focuses on prob-
lems with periodic boundary conditions. An approach for
applying wavelet—Galerkin periodic solvers to more general
elliptic boundary value problems is described in {13, 14].

4.1. The Wavelet—Galerkin Equations

Consider the biorthogonal wavelet expansions

G ™

Un(X) = D Coard(X) ful®) = D, S0,

t=—m k=-m

(26)

where the sequences {c,,.} and {3,,,} are n-periodic in k. Equiva-
lently, the periodicity conditions on u,, and f,, are

W) = w{x + 27"n), fulx) = fux + 27"n).

Substituting in Eq. (20) and using {¢, 5/ =0, 1, ..., n — 1}
as test functions, we get the wavelet—Galerkin equations

oo

21("‘ E Cm,k(¢5§.tlg s

b=—w

it = iy =01, on—1; 2D

1.e.,

CQ, O Q. - Aoy O 7
QO Q, - 0 - o
0, 0. L9 0
22Im
0, o Q, 0
ﬂ—l Q_g 0 Qf_] Q(} J
[ Cpo | © 5.0 |
Cm.] j'm,]
Cm2 j.mj
- | @®
-Cm,n—l- -S;m,nflJ
where
I .
Q= (Bt busd = 2, (i) (=178, (29)
j==1
from Eq. (24). We abbreviate Eq. (28) to
K., =58, (30

4.2. Decomposition of the Wavelet—Galerkin Equations

‘We now consider a decomiposition of u, and f,, into compo-
nents at scale m — 1,

Uy = MUm| + Up1» fm =fm*l + Brm—1s (3])

where

vm—l(x) = _2 d —I,kwm—l,k(x)s

(32)
Gt (XY= > o1 ).

k=—=

Using the same test functions as before, the wavelet—Galerkin
equations now become
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22m=0) E Cm—l,k(‘i’ﬁi—}l,k, (bm,> + 2% Z d,.- lk(wgllk, d’m;)

k=—= f=—w
= z fm—l.kw_’m—l.k, ¢m.j> (33)
k=—m
+ 2 t_mfl\k(l?;m~l,k’ (f)m,j}v .I= 01 1= ey B L
k=—o
Expanding ¢, ; using the relation
= LS bt = S b, (8
\/2' - -2 Pm—1p \/5 - i=2p'm—1p
and remembering that
(‘f’(maks P lp) (‘{fﬁf—)l,h ‘%4.;;) =0
we get
zﬂ pzmm b E 4 —1k<¢m L ¢m—x.p>
k=—=
1 ~ £
72 b'-szzi(m i E d 4Lk<¢ggl4k 'YBM*],,U)
k=-—w
! (35)
- 1 .
E,," Aj2pSm1p T 72; by-aplin-1,»
i=0, 1L .,n— 1

In matrix form Eq. (35) becomes

-t [Km—l 0 ][CMI:‘”W‘ 81 (36)
B R C 2l ady/ ) | I " |

where we have used Theorem 3.1 to simplify (h ) s Yn1 p)-
Note that Eq. (36) is equivalent to Eq. (30).

Equation (36} tells us that the application of a single stage
of the dual DBWT to Eq. (30) produces a system of equations
in which the stiffness matrix is partially diagonalized. Applying
further stages of the dual DBWT leads to a system with an
almost perfectly diagonal stiffness matrix,

Kdeccdec = §dec> (37)
where ¢, and 8, are the primary DBWT of ¢, and the dual
DBWT of §,. respectively, and K. is the 2D dual DBWT of
K, (obtained by applying the 1D transform to every column
and then to every row). Since K, is almost perfectly diagonal,
the solution of Eq. (37) requires no more than ((n) operations.
We recall that the DBWT and its inverse require Q(n) opera-
tions, so that the solution of Eq. (30} is also an O(#) procedure.

50

100

100 0 50
nz = 8672

100
nz =192

FIG. 3. Structure of the stiffness matrix for the operator 8*/9x* using (a)
biorthogonal wavelets derived from D10 and (b) D10 orthogonal wavelets.

Figure 3a shows the sparse structure of the stiffness matrix,
Ky, for the operator 8*/dx* on the periodic interval [0, 1) with
m = 7. The biorthogonal wavelets used to form the stiffness
matrix were derived from Daubechies 10 coefficient wavelets.
Figure 3b shows the structure of the stiffness matrix that would
have been obtained if we used Daubechies 10 coefficient orthog-
onal wavelets instead.

4.3. Scaling Function Coefficients and Expansions

Finally, we need to determine the cost of evaluating the
scaling coefficients of f,(x) and performing the expansion of
un(x) in Eq. (26). At first sight, the temptation might be to
approximate the scaling coefficients by a discrete sampling of |
the functions f and x. Further thought reveals that such an
approximation leads directly to Eq. (30), making the solution
procedure equivalent to a conventional finite difference formu-
lation of the problem, Thus, the high order of accuracy afforded
by wavelets would be lost. To preserve high order accuracy
while maintaining cost efficiency, we use the following proce-
dures:

Evaluation of scaling functior coefficients. The scaling func-
tion coefficients of f(x) are given by a convolution integral:

S = (F00, 0 =2 [T FQWISY =R dy. (39)

Suppose we are given n samples of f(x), evenly spaced over
one period:

=2, j=0,1,...n— L

Then the scaling coefficients at the finest scale may be calcu-
lated from a discretization of Eq. (38),

Sux =272 £ — k),

j=—=»

(39)
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where f.., = f. Equation (39) leads to the system

[ S ] F & b b b 0 0 %7
S 0 & B by 0 0 h
S 0 0 ¢ - by 0 0 h
= 2w : (40)
dy-1 0 O bn-3 by
‘;"’2 ¢3 ¢4 fe 4] qb() d)'
L fm,nfl ¢1 ¢2 ¢3 e 0 0 ) ¢D ﬁl—l
where N, 1 the length of the biorthogonal wavelet filters. The W= ua(277), j=0,1,.,8n—~1
values of the primary scaling function ¢(x) for integer values
of x are easily computed using by solving an eigenvalue problem g Eq. (26), we have
arising from the dilation equation, Eq. (5) (see, e.g., [4] for
details). From Eq. (40), it is evident that the scaling coefficients w
5., may be calculated in O(n) operations. ;= 2m 2 Cmi(j — K), (41)
Scaling function expansions. The evalvation of u,(x) in Eq. ===
(26) also involves convolutions. This time, however, the proce-
dure is exact. Consider n samples of u,{x), uniformly spaced ie.,
over one period:
w7 i s 0 a Q"N,;l ¢ @ m Cmp L
by & &y 0 0 b b Com)
iy &, ¢ o 0 ¢ Cm2
= Jmi2 (42)
Pu-1 by Py 0 0
0 0 0 oy o G O
i Uy-) ] L 0 0 0 R YA o T J; Cm—lJ
Thus u,(x) may be computed from its scaling coefficients in TABLE 11
O(n) time. Multiscale Solution Algorithm
4.4. Multiscale Solution Algorithm——Table I Compute the dual scaling function coefficients, §.., of f(x). o)
Compute the dual DBWT, §,.., of §,. O(n)
Construct the stiffness matrix, K., and solve for ¢y.. Hn)
Apply the primary IDBWT to obtain the primary scaling function O}
5. NUMERICAL RESULTS coefficients, ¢,, of w.(x).
. ) Expand u,(x) from its primary scaling function coefficients. O(n)
In this section, we present results from our implementation
Total cost Qln)

of the multiscale solution algorithm. We used three different
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methods to solve the problem

2
% u = —20m* sin(2mx) sin(47x)
(43)
+ 1677 cos{2a@x) cos(dmx),

where u(x) is periodic with period 1 and has zero mean:;

1. Multiscale solution of the decomposed wavelet-
Galerkin equations (37) for the adapted biorthogonal wavelets
derived from the Daubechies D6 wavelet. (Inversion of the
coarsest scale stiffness matrix block was performed using the
FFT.)

2. Direct solution of the wavelet—Galerkin equations (30)
for the orthogenal Daubechies D6 wavelet. (Inversion of the
stiffness matrix, K,,, was performed using the FFT.)

3. Direct solution of the wavelet-Galerkin equations (30)
for the biorthogona] wavelets derived from the Daubechies D6
wavelet. (Inversion of the stiffness matrix, K, was performed
using the FFT.)

Method 2 involves numerical calculation of the connection
coefficients, {¢(-), ¢{- — k)) (see [5]). The connection coeffi-
cients were precalculated and the cost of these computations
is therefore not reflected in the results which follow.

Figure 4a compares the convergence of the three methods.
Based on these numerical resuits, the multiscale algorithm and
its equivalent single scale biorthogonal wavelet algorithm con-
verge roughly as O(Ax*"), whereas the truncation error for the
orthogonal wavelet algorithm is G(Ax*2). Note that higher order
wavelets would have given higher rates of convergence while in
conirast, a three-point finite difference scheme would converge
only as O(Ax?). Algorithms 2 and 3 suffer from noise introduced
by the FFT at large n as evidenced by the upturn in their curves.

-5 T T T T

- multiscale biorthagenal wavealet
. -. single scale orthogonal wavelet
.. single scale biorthogonal wavelst

-15}

leg2(error)
]
=

2
)
a

=30

. L " : L
5 6 7 8 ] 10
log2{mash siza)

-33 'y

FIG. 4.

Clearly this problem is eliminated by the multiscale algorithm.

Finally, Fig. 4b compares the accuracy—cost performance of
the three methods. This conclusively shows that the multiscale
algorithm offers a considerable improvement in efficiency over
the other two methods.

6. CONCLUSIONS

The construction of Dahlke and Weinreich opens new possi-
bilities for the development of rapid and highly accurate solu-
tion procedures for ODEs and PDEs, We have shown that their
construction leads to an almost perfectly diagonal stiffness
matrix when the wavelet—Galerkin method is applied to a cer-
tain class of problems. This trivializes the task of inverting
the stiffness matrix, allowing us to solve such problems in
O(n) time.

Work on adaptation of wavelets to more general differential
operators as well as to higher dimensions has been done by
Dahlke and Weinreich [6] and Dahlke and Kunoth [7]. The
most important question now is whether these generalizations
may be used to obtain O(x) multiscale solutions for a larger
class of problems.

APPENDIX A: PROOF OF THEOREM 1.1

(W), - — )
= [T P TE R dx

| [ o
= |7 ¥ k) g

= |7, (oMo e e

2
-5 T T
. . b
- multiscale biorthogonal wavelat
-. gingle scale orthogonal wavelet
.. gingle scale biorthoganal wavelst
=
£
2. ]
&
g
. ) L s 1
35‘1 2 13 14 15 16 17 18

log2(number of operations)

(a) Error in computed solution. (b) Accuracy-cost performance of the three algorithms.
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=(—1Y % J: g [% b"(e—i(gf?.))& (g)]

1 =i A ﬁ
[ (£) ]

=(—1Y gl;r_ f:] g ig(e-i(an)lz

2
€
¢,(§)1 a%

| T o .
= (_l)lgﬁ £t 2 |b(e—,(g+zmz))|z(§+ 27m)21

n=-m

&+ 2an :
o(£72)

— (_])zéﬁﬂ o [lg(e—i(gfz))lz i £+ 471.”)21

+{E+ dnn
"5( 2 )

2

+ [B(—e M} D (£+ 20 + 4mn)|

n=—w

(§+ 277+47m) 2] de

2
= 1 g [ e e +
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